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An exactly solvable model for the rewiring dynamics of weighted, directed networks is introduced. Simu-
lations indicate that the model exhibits two types of condensation: �i� a phase in which, for each node, a finite
fraction of its total out-strength condenses onto a single link; �ii� a phase in which a finite fraction of the total
weight in the system is directed into a single node. A virtue of the model is that its dynamics can be mapped
onto those of a zero-range process with many species of interacting particles—an exactly solvable model of
particles hopping between the sites of a lattice. This mapping, which is described in detail, guides the analysis
of the steady state of the network model and leads to theoretical predictions for the conditions under which the
different types of condensation may be observed. A further advantage of the mapping is that, by exploiting
what is known about exactly solvable generalizations of the zero-range process, one can infer a number of
generalizations of the network model and dynamics which remain exactly solvable.
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I. INTRODUCTION

Networks, and in particular weighted networks, have a
long history in the social, natural, and engineering sciences.
The many and varied examples of networks range from sys-
tems such as transportation networks to ecological, bio-
chemical, and social networks �1,2�. Basically, a network is a
graph containing nodes connected by links �or edges�—the
network is said to be “weighted” when weights are assigned
to the links. The interest in networks within the physics com-
munity was initially with regard to the statistical properties
of the connectivity structure of unweighted networks �i.e.,
networks where links are restricted to have weight one or
zero only, indicating a connection or no connection, respec-
tively�; studies focused, for example, on the degree distribu-
tion, i.e., the distribution of the number of links connected to
a node, and the clustering coefficient which probes how trios
of nodes are correlated. Subsequently simple models for
growing networks exhibiting interesting statistical properties
were proposed �3�.

Recently, weighted networks have also become of interest
to this community. These networks may be defined through
their adjacency matrix wij, which gives the weight of the link
from node i to node j. The links may be directed or undi-
rected corresponding to an asymmetric or symmetric adja-
cency matrix. Data are available for many real weighted net-
works, of either directed or undirected kind, leading to
studies of the statistical properties of scientific collaboration
networks �SCNs� �4,5� and the worldwide airport network
�WAN� �6,7�. Typical quantities used to describe the topol-
ogy of general weighted networks are the distribution of in-
strength and out-strength, which are defined as the total
weight going into or out of a node due to all the connected
links; weighted clustering coefficients; generalizations of the
idea of minimal spanning trees to weighted networks �8,9�.
An interesting aspect of weighted networks is how the
weights of the links are correlated to the topology of the
network: the weights may be determined solely by the global
topology, they may be independent, or they may be corre-
lated in some more complicated way. For example, in trans-

portation networks, where the weight represents the flow
through a link, the weights are determined solely by the to-
pology; in the SCN it appears that the degree of a node and
weights of its links are uncorrelated; in the WAN, correla-
tions between the node degree and the weights of its links
lead the strength to grow faster than the degree.

Attention has recently focused on constructing simple
models of “growing” weighted networks, with the aim being
to investigate the resulting degree and weight distributions
and the relation between the two. Initial work had the weight
of links determined by the degree of the node they were
attached to �9–12�. To loosen this coupling between weight
and degree, a model with dynamical evolution of weights
during growth was introduced in �13–15�. Moreover, models
of growing networks in which the dynamics depend on the
weights of the links rather than the degree of the nodes were
proposed in �16�. For a review of recent work on weighted
networks see �7�.

An alternative class of evolving network models, which is
the focus of this work, is that of “rewiring” or “equilibrium”
networks �2,17,18�. In these models, usually considered for
unweighted networks, the number of nodes is fixed and the
dynamics involves the rewiring of links between nodes, al-
though the effect of creating and destroying links has been
examined recently �19�. For rewiring dynamics, one is inter-
ested in the steady-state properties of an ensemble of net-
works. Under certain conditions on the rewiring rules �20�
one can obtain a condensed phase where one node �the con-
densate� attracts a finite fraction of the available links. Thus
there is a single extensively connected node while the other
nodes exhibit a power-law background in the degree distri-
bution. Hence the network is scale-free if one discounts the
condensate. The transition is reminiscent of the “gelation”
transition in growing networks from the scale-free phase to a
phase with a dominant “hub” �21–23�.

These rewiring networks may be related to interacting
particle systems such as the zero-range process �24� for
which condensation transitions have been widely studied—
for a recent review see �20�. The zero-range process is de-
fined such that particles hop between the sites of a lattice
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with a rate that depends on the number of particles at the site
of departure. The idea behind the mapping is to identify the
nodes of the network with the sites of the lattice model and
the links of the network become the particles—the rewiring
of links corresponds to particles hopping from site to site. At
the simplest level, this mapping is approximate in that the
number of particles at a site represents only the degree of the
corresponding node, but does not determine the other nodes
to which a node is attached. However, the steady states of the
two systems have the same form.

The aim of the present work is to introduce a model for
the rewiring dynamics of a directed, weighted network. By
virtue of an exact mapping between the network model and a
set of coupled interacting particle systems, we are able to
analyze exactly conditions on the rewiring rates under which
the network will exist in some kind of condensed phase.
Specifically, we define the network model in Sec. II, the key
features of which are that �1� the network is directed; �2� the
out-strength of each node is conserved under the dynamics
but the in-strength evolves; and �3� the dynamics are gov-
erned by the weights of links and the in-strength of the
nodes. In addition, the weights are integer variables, al-
though this constraint may be relaxed �as we discuss in Sec.
V�. Thus we define a weighted network model with a fixed
number of nodes where strong nodes and links with large
weight may tend to attract more weight.

In Sec. II A, we show how this model enjoys a mapping
to an interacting particle system known as a multispecies
zero-range process �26,27�. The idea is that, since the out-
strength of each node is conserved, the dynamics at each
node is basically the exchange of weight between the links
coming out of that node. Thus each node may be related to
an interacting particle system in which the exchange of par-
ticles between sites represents the exchange of weight be-
tween links. However, since the dynamics at each node also
depends on the in-strength, these interacting particle systems
are coupled. This mapping of the weighted network to a set
of coupled interacting particle systems contrasts with the
previous mappings of an unweighted network to a single
interacting particle system discussed in �2,17,18,20�.

The results of simulations, presented in Sec. III, indicate
two distinct types of condensation within this model: the first
is when, for any given node, a finite fraction of the out-
strength condenses onto one weight out of that node; the
second is when a finite fraction of the total weight in the
system is directed onto one particular node. The first scenario
gives a realization of a transition in the “disparity,” the idea
of disparity, discussed in the context of internet traffic �28�
and simple growing weighted network models �29�, being
that one weight from a node is dominant over the others from
that node. The second scenario is related to the usual con-
densation transition occurring in unweighted rewiring net-
works, wherein a single hub acquires a finite fraction of the
total number of links in the system, as observed in
�2,17,18,20�. An additional feature of our model is that there
is a condensation of weight onto each condensed link.

We exploit the mapping to the interacting particle system
in Sec. IV, in order to solve and analyze steady-state proper-
ties of the network model exactly. In particular, we derive
conditions on the rewiring rates which lead to the two types

of condensation observed in simulations. The mapping also
enables one to identify a number of possible generalizations
of the network model and its rewiring dynamics, which we
discuss in Sec. V. Finally, we conclude in Sec. VI.

II. MODEL

We study a model of a dynamically evolving, directed
network of L nodes with weighted links. Since the weights
are integers we will denote the weight associated with the
link from node k into node l by an integer nkl�0 �instead of
the usual wkl�. When nkl=0, this represents no link from k to
l. We depict such a network with L=4 nodes in Fig. 1.

The dynamics of the network are such that one unit of the
weight associated with the link pointing from node k into
node l is rewired to point into another randomly selected
node l� with a rate uk�n� l�, where n� l�n1l ,… ,nLl. In general,
this rate is a function of the weights associated with all of the
links pointing into node l, and it depends on the source node
k—for the example in Fig. 1, the rate at which the one unit of
weight for the link connecting node C to node A is rewired to
another node is uC�nAA ,nBA ,nCA ,nDA�. After the rewiring,
nCA=2 and any of nCB, nCC or nCD have increased by 1.
These dynamics conserve the out-strength Mk=�l=1

L nkl which
is the total weight of all links pointing out of node k; the total
weight of all links pointing into node l, i.e., the in-strength
Xl=�k=1

L nkl is not conserved. For simplicity we will take
Mk=M for all k. Later, in Sec. V, we will consider several
generalizations of the model and dynamics. In particular we
consider rewiring dynamics, which depend on the node to
which a link is being rewired. This allows one to make a
connection with a form of preferential attachment in which
links are preferentially rewired to nodes with large in-
strengths �13�. We proceed with the dynamics defined above
in order to make a clear connection to well-studied interact-
ing particle systems. We stress that either alternative for the
dynamics yields the same behavior and transitions.

A. Mapping to a system of interacting particles

To make the connection with interacting particle systems,
we use the adjacency matrix A to encode the network: the

FIG. 1. A picture of a weighted directed network with L=4
nodes, labeled A, B, C, and D. The direction and weight of each link
are shown. The corresponding adjacency matrix is also shown.
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value of element �k , l� of the matrix is nkl; the weight of the
link pointing out of node k into node l, as shown for example
in Fig. 1. Note that here, because the network is directed,
A�AT. The idea is to represent the adjacency matrix by a
lattice, where site �k , l� of the lattice represents element �k , l�
of the adjacency matrix. The value of the element �k , l�, nkl,
is then understood as the number of particles at site �k , l� of
the lattice. The lattice is therefore two dimensional, since it
represents the elements of a matrix, even though the network
model may typically be defined in a fully connected geom-
etry �i.e. a link pointing into one node is rewired to point into
any other randomly selected node�.

The network dynamics then causes the elements of the
adjacency matrix to change. Thus the corresponding particle
configurations of the lattice model also evolve according to
dynamical rules, rules which have their origin in the dynam-
ics of the network model. For the network dynamics de-
scribed above the corresponding interacting particle system
is a generalization of the much studied zero-range process
�20�, for which the steady state is exactly solvable.

B. Model as a zero-range process with L species of particles

The interacting particle system is defined on a square lat-
tice �since the adjacency matrix is a square matrix� with L
�L sites. On this lattice nkl labels the number of particles at
the site located at row k=1,… ,L, column l=1,… ,L. There
are M particles in each row, a total of LM in the system.
Under the network dynamics described in Sec. II, both M
and L are conserved. Rewiring single units of the weight of a
link connecting node k to node l corresponds, in the interact-
ing particle system, to a particle in row k and column l hop-
ping to another randomly selected site within the same row
with a rate uk�n� l�, given by Eq. �1�.

We remark that these are the dynamics of a zero-range
process �ZRP� with L species of particles, labeled k
=1,… ,L. Each site l=1,… ,L of a one-dimensional lattice
contains nkl particles of species k. A particle of species k then
hops with a rate uk�n� l� to any other site on the lattice, i.e., a
rate which depends upon the number of particles of each
species at the departure site l. Thus we identify rows of the
two-dimensional lattice with different particle species �so the
total number of particles of each species is conserved� and

the columns of the two-dimensional lattice are identified
with sites of a one-dimensional lattice, as illustrated in Fig.
2. This mapping is useful because much is known about the
exact steady states of zero-range processes and many of its
generalizations. In Secs. III and IV we will specialize to a
rate of the form

uk�n� l� = us�nkl�uc��
k=1

L

nkl� , �1�

which depends on the weight of the link being rewired,
through the function us�nkl�, and the total in-strength of node
l, through the function uc��k=1

L nkl�. This model can be solved
exactly in the steady state: the analysis which follows ex-
ploits this knowledge and one expects that many variations
of the network model will also be exactly solvable; those that
are can be inferred from the corresponding zero-range pro-
cess.

Although the model we consider can be thought of as a
ZRP with L species of particles, we will proceed with the
terminology of the rows and columns of a two-dimensional
lattice, since this retains closer contact with the adjacency
matrix of the original network model.

III. SIMULATIONS

In this section we present results from simulations of the
model that show the two types of condensation: site conden-
sation, where a finite fraction of the particles in each row
condenses onto a single randomly located site of the row;
and column condensation, where a finite fraction of all the
particles in the system condenses into a single column. In the
network context this corresponds to a finite fraction of the
weight from each node being contained in a single link from
that node; and a finite fraction of the weight pointing from all
nodes to a single node, respectively. We also present simula-
tions that exhibit characteristics of both types of condensa-
tion, which are interesting from a network perspective.

The model is simulated using a simple Monte Carlo algo-
rithm. At each time step the following update procedure is
followed.

�1� A site of the lattice �k , l� is chosen at random.
�2� If the site is occupied then a particle will be removed

FIG. 2. A picture of the interacting particle systems which represent the network depicted in Fig. 1. On the left-hand side is the
two-dimensional lattice model with the occupation numbers nkl entered in row k and column l of the lattice. On the right-hand side is the
corresponding multispecies ZRP �here there are four species�—note that there is no ordering among the particles at a particular site.
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from this site with probability u�n� l��t, where u is the hop rate
�1� and �t is the time interval, chosen such that the probabil-
ity of a hop occurring is always less than or equal to 1.

�3� If a particle was removed, then a second site �k ,m�
�within the same row� is chosen at random and a particle is
added to this site.

All simulations were run on lattices of size 100�100, i.e.,
on networks with 100 nodes, and for O�107� Monte Carlo
sweeps. The first half of each run was used to relax to the
steady state and the second half to measure probability dis-
tributions. Distributions were measured for the number of
particles at a site �link weight�; the number of particles in a
column �node in-strength�; and the number of occupied sites
in a column and row �in- and out-degree, respectively�. Typi-
cal configurations of the lattice were also output.

In order to compare with theory �see Sec. IV�, the follow-
ing hop rates were chosen to show the two condensation
types. Recall that we consider a hop rate for particles from
site �k , l� of the form �1�. For site condensation we make the
choice

us�n� = �1 + bs/n� and uc�n� = 1, �2�

with bs=4 and for n�0. For column condensation we make
the choice

uc�n� = 	1 + bc for n � L ,

1 + bcL/n for n � L ,

 and us�n� = 1,

�3�

with bc=1.05.

A. Site condensation

The simulations for the site condensation case were run
with 175 particles in each row starting from a random initial
configuration. The site condensation can be seen clearly from
the site distribution �black circles, Fig. 3�a��. The peak at
around n=150 represents the site condensates, it has an area
of order 1 /L and there are L2 sites indicating that L sites
have occupations of around 150 particles. As the number of
particles in each row is fixed at 175, there can be at most one
such site in a row and an occupation of this size represents an
appreciable fraction of the total number of particles available
to a site, hence implying a condensation in the thermody-
namic limit. Thus we have a single condensed site in each
row. Note also that the site distribution has an apparently
power-law background before the condensate peak. This is
reminiscent of the behavior of a single-species ZRP �20�;

FIG. 3. Distributions from simulation of the
model with the hop rate chosen to display site
condensation. �a� Site and column occupation
distributions, corresponding to the distributions
of weight among links and in-strength among
nodes in the network context, respectively. �b� In-
and out-degree distributions.

ANGEL, HANNEY, AND EVANS PHYSICAL REVIEW E 73, 016105 �2006�

016105-4



indeed as the column attraction has effectively been switched
off, the system is a collection of single-species ZRPs. The
column distribution �gray crosses, Fig. 3�a�� shows that, in
the absence of any coupling between the rows, the con-
densed sites are randomly distributed among the
columns—as one would expect. The first peak in the distri-
bution at around n=50 shows that some columns do not
contain any condensed sites, just those from the power-law
background. The second, third, etc. peaks correspond to col-
umns with one, two, etc. condensed sites in them, plus a
background from the rest of the sites. This is exactly what
one would expect if the condensed sites were randomly dis-
tributed in the columns and a random sampling of the site
distribution to create a column distribution agrees closely
with the simulation. The typical configuration �Fig. 4� bears
this out, condensates can be seen on individual sites, but no
column ordering can be discerned. Although not shown here,
systems with weak column attraction showed similar behav-
ior, i.e., as though no column attraction was present.

The degree distributions for the site condensation case
�Fig. 3�b�� appear to be binomial in nature: a binomial dis-
tribution constructed from the measured probability of a site
having zero occupation matches very closely the data shown.
Thus in the network context, for the site condensation we
have connectivity similar to that of a random graph �which
also has a binomial connectivity distribution�. In addition to
this we have a condensed link weight from each site with a
power-law background, and an in-strength which is a random
sum of link weights.

B. Column condensation

The simulations for the column condensation case were
run with 1000 particles in each row. The initial condition was
taken with all particles on the same site. The column con-
densation can be seen clearly from the column distribution
�gray crosses, Fig. 5�a��. The peak at around n=85 000 cor-
responds to the condensate; it has an area of order 1 /L and
there are L columns, indicating that a single column has an
occupation of around 85 000, an appreciable fraction of the
total number of particles in the system L�M =100�1000.

The other, lower peak at around n=100 represents the col-
umns that do not contain a condensate. The site distribution
�black circles, Fig. 5�b�� also shows condensation onto sites
in the peak at around n=850. If the column interaction were
to be switched off leaving L uncoupled single-species ZRPs,
it is known that the chosen us�n��=const� would not give
condensation in this fully connected homogeneous system;
see, for example, �20�. Thus in this case it is the column
interaction that has induced a site condensation. Note that
both the column and site distributions have apparent power-
law pieces, with equal or close exponents. The theory pre-
sented in Sec. IV allows one to construct the critical column
distribution at the transition point—shown as the dotted line
in Fig. 5�a�. This fits the noncondensate background part of
the measured column distribution very well. The typical con-
figuration of the system, Fig. 6, shows the column conden-
sate comprises site condensates all in the same column.

The out-degree distribution for the column condensation
case �gray triangles, Fig. 5�b�� is similar to the site conden-
sation case, being distributed according to a binomial distri-
bution. However, the in-degree distribution �Fig. 5�b�, black
squares� is significantly different; in particular, it has a
broader tail and also a single site that is connected to all
others, as shown by the lone data point at degree L with
probability 1 /L �L=100 in this case�. Thus in the network
context the out-connectivity resembles that of a random
graph, but the in-degree distribution displays a broader tail
and there is a single node to which all others point—the node
corresponding to the condensed column. Furthermore, all
links pointing to this node hold a finite fraction of the weight
available and the node holds a finite fraction of the total
in-strength available to it. Broadly tailed degree distributions
are often observed in real networks, weighted and un-
weighted alike. While the tail observed in these simulations
is not as broad as many observed, it is at least broader than
that of the equivalent random graph. Also apart from the
condensed pieces the in-strength and weight distributions
display power-law tails, again something that has been ob-
served in many real networks. Thus, as with equilibrium net-
works �2,18�, certain distributions may take a power-law
form at a critical point.

As mentioned at the beginning of this subsection, we em-
ployed a fully condensed initial condition. The reason is that,
for a random initial configuration, the dynamics slows down
as the system reaches a state in which several columns con-
tain a large number of particles; the single column conden-
sate is attained only on prohibitively long time scales.

C. Further behavior

In the preceding sections the somewhat extreme cases of
the absence of site or column attraction in the presence of the
other �us or uc set equal to 1� were considered. This was to
allow for a direct comparison with theory. Cases where some
forms of nontrivial attraction are present in both us and uc are
difficult to compare directly with theory. However, such sys-
tems do display interesting behavior and so in this section we
present some numerical data from simulations of such a sys-
tem.

FIG. 4. Typical configuration of the system; output from simu-
lation of the model with the hop rate chosen to display site
condensation.
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Simulations were run on a system with 175 particles in
each row and the hop rate given by uc�n�=1+bc /L for n
�L, uc�n�=1+bc /n for n�L and us�n�=1+bs /n, with bc

=16 and bs=2.5. If uc were set equal to 1, then no conden-

sation would occur at this particle number �20�. If us were set
equal to 1, then no condensation would take place at any
finite particle number �see Sec. IV�. Results from simulations
show that this system, with both site and column attraction
present in forms that separately show no condensation be-
havior, does show something that could be interpreted as a
condensationlike phenomenon. The following results were
obtained from a random initial configuration.

In Fig. 7�a�, it can be seen that the site occupation distri-
bution �black circles� has a decaying part and a peak at
around n=150 and is generally reminiscent of a condensed
system. The column distribution �Fig. 7�a�, gray crosses� also
shows a large n peak, at around n=3500, although it is much
broader than one usually associated with a clear condensa-
tion. The typical configuration data in Fig. 8 indicate that the
high n bump of the column distribution represents more than
one highly occupied column, each composed of many site
condensates. Without a direct comparison with theory avail-
able, it is difficult to interpret this broad peak: it could be a
finite-size effect that will not be seen in larger systems, but
on the other hand it could be a true condensation that is
being adversely affected by the finite size of the system. In

FIG. 5. Distributions from simulation of the
model with the hop rate chosen to display column
condensation. �a� Site and column occupation
distributions, corresponding to the distribution of
weight among links and in-strength among nodes
in the network context respectively. �b� In- and
out-degree distributions.

FIG. 6. Typical configuration of the system output from simu-
lation of the model with the hop rate chosen to display column
condensation.

ANGEL, HANNEY, AND EVANS PHYSICAL REVIEW E 73, 016105 �2006�

016105-6



either case it is interesting from a network point of view as
real-world networks are often of finite size.

The degree distributions of this system are also interest-
ing. They both have a binomial form for low degree, but the
in-degree distribution departs from this at high degree—it
has a small secondary peak implying that several sites are
highly connected, but a completely connected site to which
all others point, as arises in the column condensation case, is
absent. Thus in the network context we have a network with
connectivity much like that of a random graph, except for the
existence of several well-connected hub nodes which would
not be present in the random case. These hub nodes also have
many high weight links pointing to them, giving them a large
in-strength.

For an initial configuration with all particles located on a
single site, we obtain distributions of the same form as above
and configurations typically contain more than one highly
occupied column.

IV. THEORY

In this section we present the exact steady state of the
model and exploit this solution in order to understand theo-

FIG. 7. Distributions from simulation of the
model with the hop rate chosen such that without
the site or column attraction elements no conden-
sation would be present. �a� Site and column oc-
cupation distributions, corresponding to the dis-
tributions of weight among links and in-strength
among nodes in the network context, respec-
tively. �b� In- and out-degree distributions.

FIG. 8. Typical configuration of the system output from simu-
lation of the model with the hop rate chosen such that without the
site or column attraction elements no condensation would be
present.
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retically the condensation transitions observed in simula-
tions.

A. Steady state

First, we give the steady state, the proof of which is given
in Appendix A. The steady-state probabilities P��n� l��, for
finding the system in a configuration �n� l�, are given by the
simple form

P��n� l�� = ZL,M
−1 

l=1

L

f�n� l� , �4�

i.e., a product over columns. Here, the functions f�n� l� depend
on a single column �i.e., the in-links of node l�, and for the
rates �1�, they are given by

f�n� l� = f c�Xl�
k=1

L

f s�nkl� , �5�

where we are using Xl=�k=1
L nkl to represent the total number

of particles in a column �the node in-strength�, and where

f a�x� = 
i=1

x

ua�i�−1 �6�

for a=s, c, where f a�0�=1. The normalization ZL,M in Eq.
�4� is given by

ZL,M = �
�nkl�


l=1

L � f c�Xl�
k=1

L

f s�nkl��
k=1

L

���
l=1

L

nkl − M� .

�7�

The � function in this normalization enforces particle conser-
vation within each row �which is the conservation of node
out-strength in the network�: it is this � function that induces
correlations between different columns in the steady state.

B. Condensation theory

Now, we exploit the exact steady state in order to under-
stand theoretically the condensation transitions observed in
simulations. Ideally, one would wish to demonstrate conden-
sation in the site and column distributions of particles, ps�n�
and pc�n�. The expressions for these distributions involve the
normalization ZL,M given by Eq. �7�, which can be thought of
as a canonical partition function since M is fixed. However,
as we now outline, it turns out to be simplest to work within
the grand canonical ensemble in which the particle number is
allowed to fluctuate.

1. Grand canonical ensemble

We introduce the grand canonical partition function in the
usual way, by defining fugacities �zk� so that we can replace
the canonical partition function �7� by

ZL = �
�nkl=0�

�


k=1

L

z
k

�
l

nkl
l=1

L � f c�Xl�
k=1

L

f s�nkl�� , �8�

where the fugacities are chosen to ensure that, on average,
each row contains the proper number of particles Mk:

zk

� ln ZL

�zk
= �

l

nkl = Mk. �9�

Here, the overbar indicates an average taken in the grand
canonical ensemble. Since we are interested in the case
where Mk=M for all values of k, the left hand side �LHS� of
this equation must be independent of k therefore zk=z for all
values of k; in this case, the fugacity z is chosen to determine
the total number of particles in the system. After a little
rearrangement, Eq. �8� can be written

ZL = 
l=1

L ��
k=1

L

�
nkl

� f c�Xl�
k=1

L

f s�nkl�znkl� �10�

=��
�nk�

f c�X�
k=1

L

f s�nk�znk�L

, �11�

where in going from the first to the second line we use the
fact that the l subscript on the nkl plays no role—each col-
umn makes the same contribution to ZL—and the quantity in
square brackets can simply be raised to the power of L. Now,
X=�knk. By taking derivatives of ZL with respect to z, one
finds that the fugacity must be chosen to satisfy

M = z
� ln F�z�

�z
, �12�

where we have defined the function

F�z� = �
�nk�

f c�X�
k=1

L

f s�nk�znk. �13�

Equation �12� is the key result of this section. Condensa-
tion typically arises when one is unable to satisfy �12� above
some critical density; under these circumstances, the grand
canonical ensemble is no longer valid and the change of the
partition function from the grand canonical form below the
critical density to some other form above it signals the phase
transition. We now discuss conditions under which �12� can
be satisfied in order to illustrate how one can theoretically
understand and predict the condensed phases observed in
simulations.

2. Condensation

It is straightforward to show that the function F�z� is a
smoothly increasing function of its argument z. Let us as-
sume that we have chosen hop rates such that the sums that
determine F�z� have a radius of convergence �. The conver-
gence properties of F�z� and its derivative determine whether
or not the system undergoes condensation. These conver-
gence properties are determined by the form of the function
f�n� � which in turn provides the conditions on the rewiring
rates under which the system condenses. We now present
two very simple examples to illustrate the two types of con-
densation.

First, we consider conditions to observe site condensation.
We take f c�x�=1, which is the case when uc�x�=1 for all x;
hence
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F�z� = ��
n=0

�

f s�n�zn�L

. �14�

Hence, from Eq. �12�, the fugacity is determined by

	 =

�
n=0

�

nf s�n�zn

�
n=0

�

f s�n�zn

, �15�

where 	=M /L is the density of particles in each row. When
both the numerator and denominator approach finite values
as z approaches the radius of convergence � there exists a
finite critical density 	c above which Eq. �12� cannot be sat-
isfied. This signals condensation: for 	�	c, each row con-
tains �	−	c�L “excess” particles which condense in a single,
randomly located site within each row. In order that 	c is
finite, one requires that f s�n� decays asymptotically like
f s�n���−nn−b for large n where b�2. This in turn implies
that the hop rates us�n� must decay asymptotically as

us�n� � ��1 + b/n� , �16�

again, where b�2, if one is to observe site condensation in
each row at finite density. In the network model, this implies
that the rate of rewiring a node must decay more slowly than
2/n, where n is the weight of the link pointing out of the
node being rewired. These considerations guide the choice of
hop rates �2� discussed in Sec. III A.

Now, we consider conditions to observe column conden-
sation. To deal with the sum over particle configurations in
F�z�, it turns out to be convenient to sum over the variable X
and introduce a � function to ensure that X represents the
number of particles in a column. Thus F�z� may be written in
the form

F�z� = �
�nk�

�
X=0

�

f c�X����
k=1

L

nk − X�
k=1

L

f s�nk�znk, �17�

where the k subscripts refer to the rows within a single col-
umn. To proceed, we take f s�n�=1, which is the case when
us�n�=1 for all n. With this choice, the sum over �nk� is
straightforward to perform—the �-function constraint sup-
plies a combinatorial factor associated with the number of
ways of adding L integers to get X—and one finds

F�z� = �
X
�L − 1 + X

L − 1
� f c�X�zX. �18�

In this case, the RHS of Eq. �12� represents the average

number of particles in a column, X̄. The asymptotics of f c�X�
determine the convergence properties of F�z� �Eq. �18��. In
order to deduce the required asymptotics, we expand the bi-
nomial factor for X
L, using the approximation

�L − 1 + X

L − 1
� �

XL−1

�L − 1�!
, �19�

for large X. To observe column condensation, the RHS of Eq.
�12� must converge to a value Xc=O�L� as z→�. This is the
case when f c�X� decays asymptotically like f s�n���−XX−�

with ��1+L. When these conditions are satisfied, the sys-
tem condenses above a critical density 	c=Xc /L in such a
way that every site in a single, randomly located column
typically contains �X−Xc� particles. A hop rate that yields
f c�X� with the required asymptotics is

uc�X� � ��1 + cL/X� , �20�

where c�1, which motivates the choice of hop rates �3�
discussed in Sec. III B.

Thus these two simple examples, f c�x�=1 and f s�n�=1,
illustrate site and column condensation, respectively. We
would like to stress that in both site and column condensa-
tion, while only the asymptotics determine whether or not
the system condenses, the actual value of the critical density
depends on the details of the form of the rewiring rates for all
values of their arguments, not just the asymptotics.

We now indicate how one can use the grand canonical
ensemble to predict the background particle distribution in
the condensed phase. We consider the case f s�n�=1, for
which pc�X�, the probability that a column contains exactly X
particles, is given by

pc�X� =
�L − 1 + X

L − 1
� f c�X�zX

F�z�
. �21�

This equation holds throughout the low density phase. In the
condensed phase, the grand canonical ensemble breaks
down; however, Eq. �21� with z=� correctly reproduces the
form of the background distribution of column occupation
numbers. For the rates �3�, Eq. �21� cannot be written in a
convenient form at z=1; however, it can easily be evaluated
numerically for a given value of bc. The result of such a
computation, with bc=1.05, is compared with simulation in
Fig. 5�a�.

V. GENERALIZATIONS

In this section we consider some generalizations of the
network model which, in the steady state, are still given by a
factorized form. The aim is to illustrate that the class of
network models with factorized steady states extends to a
wide variety of rewiring dynamics and so, by making the
connection between network dynamics and interacting par-
ticle systems, we are rewarded with a versatile approach to
the analysis of network properties.

A. General dependence of the rewiring rates on departure and
destination nodes

We begin by considering three generalizations of the re-
wiring rates.

�1� General dependence of the rewiring rates on the
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weights of links rather than the specialized form �1�.
�2� Rewiring rates that depend on both the weights of the

links pointing into the node from which the link is being
removed, and the weights of the links pointing into the node
into which the link is being rewired—this allows one to con-
sider preferential attachment.

�3� Heterogeneity in the rewiring dynamics such that one
can consider rates that differ depending on the source, depar-
ture, and destination nodes of the link.

With these generalizations, one unit of the weight associ-
ated with the link pointing from node k into node l is rewired
to point into another randomly selected node l� with a rate
ukl�n� l�tkl��n� l��. The heterogeneity described in the above
point 3 enters through the k, l, and l� superscripts on u and t.
The corresponding interacting particle system has been dis-
cussed in the literature in the context of “urn” models �dis-
cussed in �30�� and “misanthrope” processes �discussed in
�20�� in a fully connected geometry, in which particle hop
rates depend on the numbers of particles at both the site of
departure and the destination site, but now defined with L
species of particles.

In the steady state, this model can still be expressed in the
factorized form

P��n� l�� = ZL,M
−1 

l=1

L

f l�n� l� �22�

�though note that f l�n� l� now carries a subscript l� provided
the hop rates satisfy the constraint

ukl�n� l;nk�l − 1�tkl�n� l;nkl − 1�

ukl�n� l�tkl�n� l;nkl − 1,nk�l − 1�
=

uk�l�n� l;nkl − 1�tk�l�n� l;nk�l − 1�

uk�l�n� l�tk�l�n� l;nkl − 1,nk�l − 1�

�23�

for all pairs of rows k and k�. We have introduced the nota-
tion n� l ;nkl−1 which represents the configuration n� l but with
the term nkl replaced by nkl−1. When the hop rates satisfy
this constraint, the functions f l�n� l� can be written

f l�n� l� = 
k=1

L �
i=1

nkl tkl�0,…,0,i − 1,nk+1l,…,nLl�
ukl�0,…,0,i,nk+1l,…,nLl�

� , �24�

having chosen f�0,… ,0�=1. This can be written in a number
of different forms due to �23�—the symmetry in f l�n� l� is
obscured within this constraint. A proof of this steady state is
presented in Appendix B.

1. Preferential attachment

To illustrate how one might exploit this steady state, we
consider a network model with preferential attachment rewir-
ing dynamics. Thus we choose ukl�n� l�=1 for all k and l, and

tkl��n� l�� = ts�nkl��t
c��

k=1

L

nkl�� , �25�

which defines the rate at which a link pointing from node k
into node l is rewired to point into node l�. This rate there-
fore is a function of the weight of the link pointing from the
source node k into the destination node l� before the rewiring

event, and a function of the total in-strength of the destina-
tion node. It satisfies the constraint �23� and one finds that
the functions f�n� l� are given by Eq. �5�, where

f a�x� = 
i=1

x

ta�i − 1� �26�

for a=s, c, where f a�0�=1. In order that this model will
exhibit the behavior observed in simulations, one can follow
the analysis of Sec. IV B 2 to deduce that if the hop rates
decay asymptotically like

ts�n� � 1 − b/n �27�

with b�2, then one observes site condensation above some
finite critical system density, and if

tc�X� � 1 − �/X �28�

for X
L with ��L+1, then one observes row condensation
above some finite critical system density.

B. Further generalizations

There are a number of further ways one can choose to
redefine the model and still obtain a factorized steady state.
One way is to consider geometries other than the fully con-
nected one, such as rewiring dynamics in which the weight
being rewired from node l is always rewired to a “neighbor-
ing” node l+1. All the models considered so far also have
factorized steady states in this geometry although there may
exist extra constraints in certain cases. Generalizations to
more complicated geometries are also possible, and have
been discussed in the context of the ZRP in �24�.

We can also relax the property of integer weights and
consider the case where the weights are continuous variables
and an arbitrary amount of the weight is allowed to be re-
wired. The approach is similar to the way one generalizes the
zero-range process to continuous masses �31�.

It is straightforward to allow each node to have a different
total out-strength, but more complicated generalizations
whereby these out-strengths are not conserved may also be
possible. Nonconservation in the context of the ZRP has
been discussed in �19,20�. Another straightforward modifica-
tion of the model is to prohibit links that point into the same
node they point out of, i.e., restrict consideration to nkk=0. A
further possibility is to allow negative weights, as well as
positive, which corresponds to a generalization of the so-
called bricklayers’ model �32�—positive and negative
weights have been considered in a rewiring social network in
�25�.

A point about the factorized steady states we would like to
emphasize is that one is free to choose any form for f�n� l� and
then infer the rewiring rates from a recursion such as Eq.
�B3�.

VI. CONCLUSION

In summary we have introduced a dynamical model of a
weighted, directed network wherein the out-strength of each
node is conserved but the in-strength is not. The rewiring
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dynamics of this model can be mapped onto a multispecies
zero-range process for which the steady state is exactly solv-
able.

Through numerical simulations and theoretical analysis
we have identified two condensation transitions in the steady
state. In the network context they correspond to a disparity
transition where for each node a single link contains a finite
fraction of the out-strength, and the more familiar condensa-
tion transition where the in-strength of a single node captures
a finite fraction of the out-strengths for all nodes in the sys-
tem. These transitions demonstrate some of the varied behav-
ior that is possible in weighted directed networks.

Within the multispecies ZRP picture these transitions cor-
respond to, in the first case, condensation of all species at
independent sites or, in the second case, a collective conden-
sation of all species onto the same site. From our knowledge
of the multispecies ZRP we are able to identify a number of
generalizations of the model and dynamics which preserve
the exactly solvable steady state. For example these corre-
spond in the network context to continuous weights, prefer-
ential attachment dynamics, and node fitness. It would be
interesting to explore further the different possible behaviors
afforded by these and other generalizations.
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APPENDIX A: PROOF OF STEADY STATE (4)–(6)

The steady state �4�–�6� can be demonstrated by noting
that, since the network model is defined in a fully connected
geometry �i.e., a link can be rewired from a node to any other
node in the network�, the steady-state probabilities must sat-
isfy detailed balance with respect to the rewiring dynamics.
�In Sec. V we comment on how one generalizes to other
geometries.� The detailed balance condition implies that

us�nkl + 1�uc�Xl + 1�P��n� l�;nkl + 1,nkm − 1�

= us�nkm�uc�Xm�P��n� l�� , �A1�

where we have introduced the notation �n� l�; nkl+1, nkm−1 to
represent a particle configuration with nkl replaced by nkl
+1 and nkm replaced by nkm−1. In this balance equation, the
LHS represents a particle hop from site kl to site km and the

RHS represents the reverse process. We now regard a solu-
tion of the form �4� and �5� as an ansatz, substitution of
which into the balance equation �A1� yields

us�nkl + 1�
f s�nkl + 1�

f s�nkl�
uc�Xl + 1�

f c�Xl + 1�
f c�Xl�

= us�nkm�
f s�nkm�

f s�nkm − 1�
uc�Xm�

f c�Xm�
f c�Xm − 1�

, �A2�

after canceling common factors and rearranging slightly.
This is satisfied for

ua�x + 1�f a�x + 1� = f a�x� �A3�

for a=s, c, which is iterated to give Eq. �6�. This proves the
steady state �4�–�6�.

APPENDIX B: PROOF OF STEADY STATE (22)–(24)

The steady state �22�–�24� can be demonstrated by asking
that the steady-state probabilities satisfy detailed balance
with respect to the rewiring dynamics; hence

ukl�n� l;nkl + 1�tkl��n� l�;nkl� − 1�P��n� l�;nkl + 1,nkl� − 1�

= ukl��n� l��tkl�n� l�P��n� l�� �B1�

for each k=1,… ,L and all pairs l� l�. Inserting the steady
state �22�, canceling common factors, and rearranging yields

ukl�n� l;nkl + 1�
tkl�n� l�

f l�n� l;nkl + 1�
f l�n� l�

=
ukl��n� l��

tkl��n� l�;nkl� − 1�

�
f l��n� l��

f l��n� l�;nkl� − 1�
, �B2�

again, for each k=1,… ,L. Both sides of this equation must
be equal to a constant which we choose, without loss of
generality, to be equal to 1, whereby we obtain the recursion

f l�n� l� =
tkl�n� l;nkl − 1�

ukl�n� l�
f l�n� l;nkl − 1� , �B3�

which can be iterated to obtain Eq. �24�. This recursion also
implies the constraint on the choice of the hop rates: one can
obtain two expressions for f l�n� l� in terms of f l�n� l ;nkl

−1,nk�l−1�; one comes by applying the recursion �B3� first
to k, then to k�; the other comes by applying the recursion to
k� before k. Performing these operations yields the constraint
�23�.
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